skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seeman, Stephanie C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The cognitive abilities of humans are distinctive among primates, but their molecular and cellular substrates are poorly understood. We used comparative single-nucleus transcriptomics to analyze samples of the middle temporal gyrus (MTG) from adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets to understand human-specific features of the neocortex. Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG. Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage. Only a few hundred genes showed human-specific patterning, suggesting that relatively few cellular and molecular changes distinctively define adult human cortical structure. 
    more » « less
  2. Summary The neocortex is one of the most critical structures that makes us human, and it is involved in a variety of cognitive functions from perception to sensory integration and motor control. Composed of repeated modules, or microcircuits, the neocortex relies on distinct cell types as its fundamental building blocks. Despite significant progress in characterizing these cell types1–5, an understanding of the complete synaptic partners associated with individual excitatory cell types remain elusive. Here, we investigate the connectivity of arguably the most well recognized and studied excitatory neuron in the neocortex: the thick tufted layer 5 pyramidal cell6–10also known as extra telencephalic (ET)11neurons. Although the synaptic interactions of ET neurons have been extensively explored, a comprehensive characterization of their local connectivity remains lacking. To address this knowledge gap, we leveraged a 1 mm3electron microscopic (EM) dataset. We found that ET neurons primarily establish connections with inhibitory cells in their immediate vicinity. However, when they extend their axons to other cortical regions, they tend to connect more with excitatory cells. We also find that the inhibitory cells targeted by ET neurons are a specific group of cell types, and they preferentially inhibit ET cells. Finally, we observed that the most common excitatory targets of ET neurons are layer 5 IT neurons and layer 6 pyramidal cells, whereas synapses with other ET neurons are not as common. These findings challenge current views of the connectivity of ET neurons and suggest a circuit design that involves local competition among ET neurons and collaboration with other types of excitatory cells. Our results also highlight a specific circuit pattern where a subclass of excitatory cells forms a network with specific inhibitory cell types, offering a framework for exploring the connectivity of other types of excitatory cells. 
    more » « less
  3. Genetically encoded voltage indicators (GEVIs) enable monitoring of neuronal activity at high spatial and temporal resolution. However, the utility of existing GEVIs has been limited by the brightness and photostability of fluorescent proteins and rhodopsins. We engineered a GEVI, called Voltron, that uses bright and photostable synthetic dyes instead of protein-based fluorophores, thereby extending the number of neurons imaged simultaneously in vivo by a factor of 10 and enabling imaging for significantly longer durations relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In the mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously over a 15-minute period of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior. 
    more » « less